Abstract

The nanoscale structural properties of ultrathin (2nm high) self-assembled (0001) polar and (1 1 2¯ 2) semipolar InGaN/GaN quantum dot (QD) superlattices, grown by plasma-assisted molecular beam epitaxy, were investigated using transmission electron microscopy (TEM) techniques. Samples grown under two sets of temperature ranges were compared. The higher-temperature uncapped polar QDs were well-defined and exhibited a truncated pyramidal morphology. Similar morphology was observed for the embedded QDs, albeit faintly diffused. On the other hand, the polar superlattices grown at lower temperatures were heavily distorted due to a large stacking fault density. Semipolar QDs exhibited lenticular morphology. The QD superlattices were found to be elastically strained using geometrical phase analysis, and their strain state was well-described by a biaxial approximation. The extrapolated indium content was consistent with reduced indium incorporation efficiency for the semipolar case compared with the polar one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.