Abstract

A tube Ge(60)H(60) isomer in D(5d) symmetry with fused five-membered rings located at the ends of the tube is more stable than the fullerene-like I(h) cage isomer at the B3LYP/cc-pVDZ level of theory. Introducing endo Ge-H bonds increases the stability of both cage and tube isomers. The most stable tube isomer can admit six endo Ge-H bonds. The cage isomer can admit 10-12 endo Ge-H bonds (H(10)@Ge(60)H(50) and H(12)@Ge(60)H(48)), and they also represent the most stable Ge(60)H(60) isomers. The stability order and structural patterns of Ge(60)H(60) are the same as those found for the corresponding Si(60)H(60) isomers. Moreover, it is found that the 6-31G(d,p) basis set fails to predict the relative energies of the Ge(60)H(60) isomers and the Ge(6)H(6) isomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.