Abstract

In order to control and tailor the properties of nanodots, it is essential to separate the effects of quantum confinement from those due to the surface, and to gain insight into the influence of preparation conditions on the dot physical properties. We address these issues for the case of small Ge clusters (1-3 nm), using a combination of empirical and first-principles molecular dynamics techniques. Our results show that over a wide temperature range the diamond structure is more stable than tetragonal, ST12-like structures for clusters containing more than 50 atoms; however, the magnitude of the energy difference between the two geometries is strongly dependent on the surface properties. Based on our structural data, we propose a mechanism which may be responsible for the formation of metastable ST12 clusters in vapor deposition experiments, by cold quenching of amorphous nanoparticles with unsaturated, reconstructed surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.