Abstract

Equilibrium geometries and electronic properties of binary transition-metal clusters, (NbCo)n (n < or = 5), have been investigated by means of the relativistic density-functional approach. The metal-metal bonding and stability aspects of these clusters have been analyzed on the basis of calculations. Present results show that these clusters exhibit rich structural varieties on the potential-energy surfaces. The most stable structures have a compact conformation in relatively high symmetry, in which the Nb atoms prefer to form an inner core and Co atoms are capped to the facets of the core. Such building features in clustering of the Nb/Co system are related to the order of bond strength: Nb-Nb>Nb-Co>Co-Co. As the binary cluster size increases, the Nb-Co bond may become stronger than the Nb-Nb bond in the inner niobium core, which results in a remarkable increment of the Nb-Nb bond length. Amongst these binary transition-metal clusters, the singlet (NbCo)4 in T(d) symmetry has a striking high stability due to the presence of the spherical aromaticity and electronic shell closure. The size dependence of the bond length and stability of the cluster has been explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.