Abstract

Periodic density functional computations have been performed for solid [UO2F4(H2O)][NMe4]2·2H2O at the BLYP level. A model with disordered fluoro and aquo ligands in the uranyl anion is significantly lower in energy than one with a symmetrical assignment of these sites, which was favored in the original X-ray crystallography study. According to optimized energies and Car–Parrinello molecular dynamics (CPMD) simulations, the [UO2F4(H2O)]2− ion in the solid is stable with respect to loss of the coordinated water molecule. In contrast, CPMD simulations had found this ligand to be unbound in aqueous solution. The role of the counterions in stabilizing the higher coordination number in the crystal is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.