Abstract

The laser damage induced by nano-absorbing centers generally results in a local high temperature and pressure environment, leading to denser phases and complex hydrodynamic processes. Here we parameterize the metal-organic framework force field to overcome the notorious unphysical agglomeration at small atomic distance in a Buckingham term. The structure and shock properties of amorphous silica are predicted well by the parameterized force field. By avoiding the Ewald summation of long-range coulomb interaction, the periodic boundary condition is not in such demand that the computational efficiency is greatly improved. The parameterized force field implicates a prospect for the atomic investigation of laser-induced hydrodynamic processes around the free surface or interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.