Abstract

The viscoelastic properties of linear flexible-chain polymers with a narrow distribution, for which M > 5Mc (Mc corresponds to the formation of a three-dimensional entanglement network), their mixtures, and concentrated solutions are examined. It is established that under the influence of deformation the polymer may undergo a transition to the rubbery state, which thus defines the limit of its flow state; this transition is also observed in mixtures and concentrated solutions of high-molecular-weight polymers with a narrow distribution. The relative simplicity of the rheological properties of linear high-molecular-weight polymers and their mixtures is determined by the sharpness of the transition to the rubbery state. It has been found that in mixtures of high-molecular-weight polymers the apparent viscosity mechanism associated with a decrease in dissipative losses on transition of the high-molecular-weight components to the rubbery state is dominant; on a broad range of molecular weights (M > Mc), and moreover for polymer solutions, the decrease in entanglement network density under the influence of deformation acquires considerable importance. It is established that the separate effect of the high-molecular-weight components on the viscoelastic properties of their mixtures contradicts the idea of a random network of macromolecular chains. Attention is drawn to the temperature dependence of the viscosity of polymers with a narrow distribution and the dynamic properties of their mixtures. Problems of theoretical and practical interest associated with the particular rheological properties of polymer systems at high deformation rates are defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call