Abstract
Model microemulsion networks of oil droplets stabilized by non-ionic surfactant and telechelic polymer C18 -PEO(10k)- C18 have been studied for two droplet-to-polymer size ratios. The rheological properties of the networks have been measured as a function of network connectivity and can be described in terms of simple percolation laws. The network structure has been characterised by Small Angle Neutron Scattering (SANS). A Reverse Monte Carlo (RMC) approach is used to demonstrate the interplay of attraction and repulsion induced by the copolymer. These model networks are then used as matrix for the incorporation of silica nanoparticles (R = 10 nm), individual dispersion being checked by scattering. A strong impact on the rheological properties is found for silica volume fractions up to 9%. q(A-1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.