Abstract
We have investigated the physical and genetic structure and regulation of the Yersinia pestis yscBCDEF region, previously called lcrC. DNA sequence analysis showed that this region is homologous to the corresponding part of the ysc locus of Yersinia enterocolitica and suggested that the yscBCDEF cistrons belong to a single operon on the low-calcium response virulence plasmid pCD1. Promoter activity measurements of ysc subclones indicated that yscBCDEF constitutes a suboperon of the larger ysc region by revealing promoter activity in a clone containing the 3' end of yscD, intact yscE and yscF, and part of yscG. These experiments also revealed an additional weak promoter upstream of yscD. Northern (RNA) analysis with a yscD probe showed that operon transcription is thermally induced and downregulated in the presence of Ca2+. Primer extension of operon transcripts suggested that two promoters, a moderate-level constitutive one and a stronger, calcium-downregulated one, control full-length operon transcription at 37 degrees C. Primer extension provided additional support for the proposed designation of a yscBCDEF suboperon by identifying a 5' end within yscF, for which relative abundances in the presence and absence of Ca2+ revealed regulation that is distinct from that for transcripts initiating farther upstream. YscB and YscC were expressed in Escherichia coli by using a high-level transcription system. Attempts to express YscD were only partially successful, but they revealed interesting regulation at the translational level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.