Abstract

The changes in the structural and electronic properties accompanying metal ionization of the iron-containing protein, rubredoxin, and of some ligand and metal mutants, have been explored using density functional theory (DFT) calculations of the metal atom coordinated to the four immediate residues. Both isolated and embedded cluster studies have been carried out, the latter using the hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The replacement of a cysteine by a serine residue has a considerable effect on both the electronic and geometric structure of the core, which can be qualitatively understood on the basis of the isolated cluster studies. The modulation of these properties caused by the protein environment is quite accurately described by the QM/MM calculations. The predicted core geometries are in good accord with both X-ray and EXAFS data, and the changes in the redox potentials are predicted, at least semiquantitatively, by considering only the core part of the protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.