Abstract

Carboxylic acid-terminated monolayers on crystalline silicon surfaces can be readily modified with biological macromolecules for the fabrication of semiconductor-based biosensing devices. They were prepared by acid-catalyzed hydrolysis of alkoxycarbonyl (ester)-terminated monolayers and studied by vibrational sum frequency generation (SFG) spectroscopy. The C-H vibration region of the SFG spectra consists of strong methyl bands with significant contributions from methylene stretching modes, indicating that these monolayers are generally ordered but with considerable gauche defects in the alkyl chains in comparison with n-alkyl monolayers. After hydrolysis, the methylene stretching modes prevail, with "residues" of the methyl bands, indicating incomplete hydrolysis and disruption of the monolayer structure. This work demonstrates that SFG is capable of providing quantitative information on structure-reactivity correlations in organic monolayers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call