Abstract

The epoxidation of ethylene stands as one of the most important industrial catalytic reactions, and silver-based catalysts show superior activity and selectivity. Oxygen is activated on the surface of silver during the reaction and exerts a substantial impact on product selectivity. Notably, the oxygen species residing in the topmost atomic layers profoundly influence the reactivity of a catalyst. However, their characterization under in situ reaction conditions remains a huge challenge, and specific structures have not been identified yet. In this study, we employ in situ X-ray photoelectron spectroscopy and density functional theory calculations to determine the oxygen species formed at the topmost atomic layers of a silver foil and to assign them a structure. Three different groups of oxygen species activated on silver are identified: (i) surface lattice oxygen and two oxygen species originating from associatively adsorbed dioxygen and (ii) top and (iii) subsurface oxygen. Transient in situ photoelectron spectroscopy experiments are carried out to reveal the dynamic evolution and thus reactivity of the different oxygen species under ethylene epoxidation reaction environments. The top oxygen atom from the adsorbed associated dioxygen is the most active. Meanwhile, a frequency-selective data analysis method, developed to process time-resolved data, provides insights into the evolving trends of peak intensities for different oxygen species. The versatility of this method suggests its potential application in future time-resolved characterization studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.