Abstract

We performed neutron reflectometry (NR) and total internal reflection fluorescence (TIRF) spectroscopy to characterize the structure and the protein binding capacity of a planar poly(acrylic acid) (PAA) brush at different temperatures. A PAA brush was prepared by spin-coating planar quartz or silicon wafers with a thin film of poly(styrene). Then, the diblock copolymer poly(styrene)-poly(acrylic acid) was deposited on these modified wafers using the Langmuir-Schäfer or Langmuir-Blodgett technique. PAA grafting densities of about 0.1 chains per nm2 were obtained. The NR experiments indicate a remarkable swelling of the PAA brush in contact with a buffer solution, when it is heated to 40 degrees C for several hours. The swollen brush structure remains upon cooling back to 20 degrees C suggesting a disentanglement of the initially formed PAA brush by the temporary heating. At pD = 6.7, the protein bovine serum albumin (BSA) with a negative net charge is strongly adsorbed to the swollen PAA brush. From the scattering length density profiles obtained from the NR curves, an almost homogeneous filling of the whole PAA brush space with BSA molecules can be deduced corresponding to an average BSA volume fraction of about 7-10% and an adsorbed protein mass of about 1.4 mg m-2. By analyzing the TIRF experiments, it is found that BSA adsorption is enhanced when increasing the temperature which represents an evidence for an entropic driving force for protein adsorption. However, the mechanism of BSA adsorption at a PAA brush appears to be different at 20 and 40 degrees C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call