Abstract

Whey protein isolate (WPI) was modified by a ternary system containing horseradish peroxidase, glucose oxidase and d-glucose through the one- and two-step protocols, yielding two respective crosslinked products MWPI-1 and MWPI-2 with the enhanced relative dityrosine contents (127.4 and 101.0). Compared with WPI, both MWPI-1 and MWPI-2 had much ordered secondary structure, increased disulfide-bond contents, average particle sizes, surface hydrophobicity, oil-binding capacity, emulsification and thermal stability, but reduced free sulfhydryl groups contents and in vitro digestibility. Moreover, both MWPI-1 and MWPI-2 in dispersions showed higher apparent viscosity, larger viscoelastic moduli than WPI, together with the lower gelling temperatures (67.1 °C and 70.1 °C versus 73.6 °C). Overall, MWPI-1 with a higher crosslinking extent consistently exhibited more remarkable property alteration. It is concluded that the ternary system is an effective approach when aiming to modify secondary structure especially these properties of WPI, such as aggregation, emulsification, gelation, rheology and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.