Abstract

An uncoated TbFeCo film on glass substrate exposed to dry air for 2 years is studied using magneto-optical polar Kerr spectroscopy and vibrating sample magnetometry (VSM). The out-of-plane hysteresis loop by VSM is found to become slanted and meanwhile, an in-plane loop is also observable. The Kerr loop measured from the exposed surface is also slanted compared to that measured from the substrate-contacted surface, which indicates that the exposed surface is oxidized. So a bilayer structure of the film is proposed. When a pump laser is switched on, the Kerr loops measured from both surfaces at the delay time of −5ps become anomalous, showing the occurrence of magnetization reversal across magnetization compensation temperature. Unlike that measured from the substrate-contacted surface, femtosecond laser-induced magnetization dynamics measured from the exposed surface does not show magnetization reversal crossing zero magnetization. This can be explained by the bilayer structure as the compensation effect of demagnetization recovery of the oxidized layer on magnetization reversal of perpendicularly anisotropic TbFeCo layer across magnetization compensation temperature. Above experimental results show that the uncoated TbFeCo film cannot resist oxidation in dry air at room temperature for 2 years while the SiO2-coated surface can do so for over 2 years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.