Abstract

The results of experimental investigations of the structure and properties of composites based on polytetrafluorethylene (PTFE) containing natural diamond powders (NDP) of different dispersity are presented. To obtain diamond-containing compositions for antifrictional applications, we used a preliminary mechanical treatment of NDP (40 μm) in a planetary mill. It was stated that the formation of the maximum ordered small-spherulite structure of PTFE after injection of NDP significantly increased the wear resistance and deformational and strength characteristics of the polymer composite materials. To produce abrasive materials, PTFE was filled with NDP having a larger graininess (from 40 to 125 μm). It was found that the injection of NDP did not cause evident morphological changes in the binder — the bonds between diamond grains and the polymer are created by physicomechanical forces. To strengthen the adhesion interaction at the interface between the binder and diamond grains and to raise the wear resistance of the material, a complex modification of the polymer with inorganic and organic fillers was carried out. It is shown that the injection of the complex filler significantly improves the tribotechnical and operational properties of the diamond-containing composite material. The general laws of the influence of NDP on the formation of the supermolecular structure of PTFE are revealed. It is shown that, by varying the degree of dispersity and the content of NDP in PTFE, and by applying different methods of their injection into the polymer matrix, it is possible to control the operational properties of the composites and to produce materials of different functional application, from antifrictional to abrasive ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call