Abstract

Silk fibroin aerogel generally suffers from weak mechanical properties, which limits its application in the high-performance materials. Hence, we develop a non-alkali urea degumming strategy for the raw silk to improve the mechanical properties of silk fibroin aerogel. The silk fibroin aerogel with a low density of 13.43 ± 0.77 mg/cm3 was fabricated successfully via silk fibroin dissolution, dilution and freeze-drying. We systematically analyze the solution properties of silk fibroin prepared via alkali degumming and non-alkali degumming. Meanwhile, the morphology and structure of aerogel are characterized by scanning electron microscopy, X-ray diffraction spectroscopy and Gaussian multi-peaks-fiting technique of infrared spectrum. Moreover, we investigate the effects of non-alkali degumming method on the mechanical properties and thermal stability of aerogels. The results manifest that the non-alkali urea degumming process reduces damage to silk fibroin, leading to the stable three-dimensional skeleton structure of the prepared aerogels. Furthermore, compared with the silk fibroin aerogel prepared by alkali degumming, the silk fibroin aerogel prepared by non-alkali degumming has higher crystallinity and content of β-sheet structure, resulting in the better mechanical properties and thermal stability. This work may pave the way for the fabrication of silk fibroin aerogel materials with high mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.