Abstract

A comparison has been made between rapidly solidified (RS) pure Sn using melt-spinning technique and Sn produced by conventional casting, using X-ray diffraction (XRD) analysis, differential thermal analysis (DTA), temperature dependence of resistivity (TDR), density measurement and the dynamical resonance method (DRM) for measuring Young's modulus and internal friction. From the XRD and density measurement, it is found that high concentration of vacancies is present in pure Sn RS, the vacancy concentration is found to be 7×10−3. From the DTA measurements, we know that there is an increase in the thermodynamic functions such as enthalpy (Δ H), entropy (Δ S) and free energy (Δ G), and also, there is a decrease in the melting temperature. From the TDR results it follows that the resistivity at room temperature is increased and the temperature coefficient of resistivity is decreased. Finally, DRM results show that Young's modulus is decreased and the internal friction is increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.