Abstract

Deposition of undoped and in situ boron-doped polycrystalline silicon-germanium (poly-Si1−xGex) films on oxide has been investigated at temperatures below 625 °C and a pressure of 4 Torr in a rapid thermal chemical vapor deposition system. The influences of reactant gases such as Si2H6, SiH4, GeH4, and B2H6 on the nucleation behavior, and structural properties of poly-Si1−xGex films formed on oxide were studied. The experimental results showed that in situ boron-doped or undoped poly-Si1−xGex films can be directly deposited on oxide without an initial Si predeposition layer to provide the necessary nucleation sites on the surface when using Si2H6 as the Si source gas. However, when SiH4 was used as the Si source gas, only in situ boron-doped films can be deposited nonselectively on the oxide without the initial Si predeposition layer, and to deposit undoped poly-Si1−xGex films, Si predeposition is needed, otherwise Si1−xGex islands are formed on the oxide. X-ray diffraction analysis showed that poly-Si1−xGex films deposited using Si2H6, GeH4, and B2H6 gas mixture have three singular peaks corresponding to {311}, {220}, and {111} planes, thus indicating the Si1−xGex alloy is formed. In addition, we found that B2H6 gas has a minor effect on the Ge incorporation into the films but reduces the overall deposition rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call