Abstract

Polyvinylidene fluoride (PVDF) membrane and PVDF membrane with phenolphthalein polyethersulfone (PES-C) addition were prepared via thermally induced phase separation (TIPS) method by using diphenyl carbonate (DPC) and dimethyl acetamide (DMAc) as mixed diluents. The effects of coagulation temperature and pre-evaporation time on structure and properties of membranes were studied. The changes of sewage flux in MBR and the attenuation coefficient of sewage flux were investigated. The resistance distributions of PVDF and PVDF/PES-C membranes were compared by resistance analysis. Membrane composition and structure were characterized by ATR-FTIR, TGA, SEM and AFM. The foulant on membranes was analyzed by FTIR. The contact angle of PVDF/PES-C membrane was lower than that of PVDF membrane. A thinner skin layer and a porous cellular support layer formed in PVDF/PES-C membrane and resulted in a higher porosity and pure water flux. The pure water flux and porosity of PVDF/PES-C membrane increased with rising coagulation temperature and decreased with extending pre-evaporation time. The flux attenuation coefficient, the cake layer resistance and internal fouling resistance of PVDF/PES-C membrane in MBR were smaller than those of PVDF membrane in MBR. The FTIR spectrum of foulant on membrane indicated that the foulant on PVDF/PES-C membrane was mostly composed of protein and polysaccharide, while the foulant on pure PVDF membrane included biopolymer clusters besides protein and polysaccharide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call