Abstract
AbstractBy means of in situ graft method, polypropylene (PP)‐wrapped carbon nanotubes (CNTs) composite were prepared. Infrared spectroscopy (IR) results showed that there was covalent linkage between PP and CNTs via maleic anhydride (MAH) grafting. Owing to the uniform dispersion of CNTs and covalent adhesion between PP and CNTs, the tensile strength of PP‐wrapped CNTs composite was higher than that for neat PP by 110%, and a 74% increase as compared to the CNTs/PP (with the same CNTs content) composite. The further test showed a strong mechanical behavior with up to 113% increase in Young's modulus of the neat PP. Based on the uniform dispersion of CNTs, the electrical conductivity of PP‐wrapped CNTs composite increased sharply by up to seven orders of magnitude with 4 wt % CNT fillers. As a result, the volume resistivity was decreased with increase in the CNT content that could be governed in a percolation‐like power law with a relatively low percolation threshold. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.