Abstract

Advanced techniques of obtaining products require careful selection of materials for various industries. Titanium alloys are widely used in the aerospace, shipbuilding and mechanical engineering industries. The development of near-a titanium alloys should be considered a significant achievement in the field of metallurgy and heat treatment (HT) of titanium alloys. This article presents a study carried out with the aim of optimizing heat treatment modes for high-temperature titanium alloys obtained by direct laser deposition (DLD). Heat treatment was carried out in the temperature range (700-1000°C), covering three typical temperature ranges, i.e. the temperature range for the partial decomposition of martensite, the temperature range for the complete decomposition of martensite, and the phase transformation temperature were subsequently selected as the heat treatment temperatures. Based on metallographic analysis, the influence of heat treatment modes on the structure, as well as the tensile properties at room temperature, of TA15 titanium DLD-samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call