Abstract

In the development of sodium all-solid-state batteries (ASSBs), research efforts have focused on synthesizing highly conducting and electrochemically stable solid-state electrolytes. Glassy solid electrolytes (GSEs) have been considered very promising due to their tunable chemistry and resistance to dendrite growth. For these reasons, we focus here on the atomic-level structures and properties of GSEs in the compositional series (0.6-0.08y)Na2S + (0.4 + 0.08y)[(1 - y)[(1 - x)SiS2 + xPS5/2] + yNaPO3] (NaPSiSO). The mechanical moduli, glass transition temperatures, and temperature-dependent conductivity were determined and related to their short-range order structures that were determined using Raman, Fourier transform infrared, and 31P and 29Si magic angle spinning nuclear magnetic resonance spectroscopies. In addition, the conductivity activation energies were modeled using the Christensen-Martin-Anderson-Stuart model. These GSEs appear to be highly crystallization-resistant in the supercooled liquid region where no measurable crystallization below 450 °C could be observed in differential scanning calorimetry studies. Additionally, these GSEs were found to be highly conducting, with conductivities on the order of 10-5 (Ω cm)-1 at room temperature, and processable in the supercooled state without crystallization. For all these reasons, these NaPSiSO GSEs are considered to be highly competitive and easily processable candidate GSEs for enabling sodium ASSBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call