Abstract

The nanocomposite polymer – inorganic materials formation, the study of their morphology and mechanical properties at the nanolevel is acute in the development of new materials for various functional purposes, including medical ones. As a result of the research the technique for producing singleand multilayer films of polyvinyl alcohol and composite polymer coatings with aluminum oxide nanoparticles by the spin coating method has been developed. It is shown that the optimal mass content of aluminum oxide nanoparticles in suspension for the formation of uniform composite coatings is 0.625 %. Based on experimental data on the structuralmorphological and mechanical properties of the formed coatings obtained by atomic force microscopy, it has been found that an increase in the number of layers of composite coatings leads to an increase in the number of conglomerates which, in turn, increases the surface roughness of the films. The modulus of elasticity of single-layer films of polyvinyl alcohol is (509.5 ± 10 %) MPa. In the case of composite coatings with aluminum oxide nanoparticles, changes in the elastic modulus have been established for multilayer coatings: an increase to 559.0 MPa (5 layers) and a decrease to 415.2 MPa (10 layers). The modulus of elasticity of the investigated single-layer coatings is significantly reduced in the range of 20−40 ºС. The smallest values after exposure to temperatures have been determined for films with nanoparticles (236.2 ± 10 %) MPa. Nanocomposites demonstrate an increase in the contact angle with an increase in the number of layers of composite coatings up to 20. A subsequent increase in the thickness of the coatings (the number of layers) leads to an increase in the hydrophilicity of the nanocomposites. The developed compositions of nanocomposite films are promising as sorption coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call