Abstract

Hydrogen is the promising pollutant-free fuel of the near future. For various hydrogen applications, suitable storage systems have to be developed. One of the safe ways is the reversible storage of hydrogen in the form of light metal (lithium or magnesium) hydrides. MgH2 magnesium hydride shows very high storage capacity (approx. 7 wt. %), but its problem is high thermodynamic stability. Therefore, high temperature (over 400°C) is necessary for MgH2 to decompose producing hydrogen. The solution of this problem can be the utilization of the complex magnesium hydrides containing nickel, copper or other transition metals. In this work, the microstructure and hydrogen storage properties of the various magnesium alloys (Mg-Ni, Mg-Zn, Mg-Cu and Mg-Cu-Al) are described. The aim was to find suitable hydrogen storage system with good storage capacity and sufficient rate of formation and decomposition of hydrides. Microstructure, chemical and phase composition of the alloys were determined by the light and scanning electron microscopy, EDS and XRD. Hydrogen saturation was carried out by cathodic polarization in the alkaline solution. Hydrogen content in the material was estimated by XRD from the shift of the diffraction lines of present phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.