Abstract

Based on the corrected phase diagrams proper growth conditions for Li2Zn2(MoO4)3 crystals are selected. Large crystals (up to 100 mm), both impurity-free and activated by transition metal ions (Cu, Cr), are grown by the low-gradient Czochralski method. By the EPR method the charge state and structural position of copper and chromium ions are determined. The performed studies of luminescent properties show that for impurity-free crystals luminescence with λ = 388 nm with a two-exponential luminescence decay with τ1 = 2 ns and τ2 = 6 ns is observed at room temperature. At 77 K for both impurity-free crystals and those activated with transition metal ions luminescence with λ = 560 nm and the luminescence lifetime τ = 100 ns is observed, the intensity of luminescence with λ = 560 nm depending on the nature and concentration of transition metal ions. Cation vacancies responsible for the charge compensation of impurity transition metal ions are assumed to be also responsible for low-temperature luminescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.