Abstract

The crystal structure and property changes of sodium bismuth titanate (Na0.5Bi0.5TiO3, NBT) piezoelectric ceramics are reported as a function of La modification (0.5–2.0 at. %) and increasing temperature using high resolution x-ray diffraction, permittivity, depolarization, and polarization and strain hysteresis measurements. La substitution is found to decrease the depolarization temperature of NBT (e.g., 1.5 at. % La substitution lowers the depolarization temperature by 60 °C relative to the unmodified composition) with little impact on the room temperature polarization and strain hysteresis. The room temperature structures of the various NBT compositions were modeled using a mixture of the monoclinic Cc space group and the cubic Pm3¯m phase, where the Pm3¯m phase is used to model local regions in the material which do not obey the long range Cc space group. With increasing La substitution, the lattice parameter distortions associated with the Cc phase approached that of the prototypical cubic unit cell and the fraction of the Pm3¯m phase increased. The relationship between these crystallographic changes and the depolarization behavior of La-modified NBT is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call