Abstract

Cylindrical blanks of Nb-48.5 wt.%Ti alloy were prepared with a variable degree of plastic strain at different temperatures of the treatment by using the thermomechanical treatment consisting of deformation of the ingot via upsetting in a closed container and its subsequent extrusion from this container to the initial size. The true strain value over one cycle of such a treatment is approximately 1.6, with the number of cycles varying from 1 to 5. Measurements were taken of strength, plastic and elastic characteristics of the differently directed deformed alloy over different stages of superconductor fabrication. TEM was used to study the microstructure of the alloy in the course of plastic deformation. It is established that such combined treatment promotes formation of a better homogeneous dispersed structure. With that the current characteristics of the niobium-titanium superconductor increase. The highest critical current density after such a treatment was 4.1 k/mm/sup 2/ under the applied magnetic field 5 T at 4.2 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call