Abstract

Solid state displacement reactions can produce in situ intermetallic and ceramic matrix composites in a process where an intermetallic or ceramic phase(s) and a potential reinforcing phase(s) are grown together during a solid state reaction. Interpenetrating and dispersed microstructures, important for desirable composite properties, have been produced by means of displacement reaction processing techniques. Two such composites have been synthesized which exhibit two distinct microstructures: MoSi{sub 2} reinforced with SiC particles, which exhibits a dispersed-phase structure, and NiAl/Ni{sub 3}Al reinforced with Al{sub 2}O{sub 3}, which exhibits an interpenetrating-phase structure. Strength in bending and chevron-notch fracture toughness have been determined as a function of temperature, and measured properties compare favorably with composites produced by other means. The measured properties are discussed with regard to the observed microstructures. The potential for displacement reaction processing is assessed, and it appears to be a cost-effective synthesis method compared to others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.