Abstract

Metal matrix composite materials (CMs) reinforced with boron particles are synthesized from powders of amorphous boron and metal (Ni, Ti) at a pressure of 8 GPa and temperatures of 500–1000°C. It is established that amorphous boron crystallizes during synthesis at temperatures above 800°С. Amorphous boron particles are characterized by a hardness of ~30 GPa, an indentation modulus of elasticity of up to 270 GPa, and an elastic recovery of more than 60%. The patterns of boride formation during high-pressure synthesis are studied. It is shown that the wear resistance of a Ni–B CM synthesized at 600°С grows by more than 30 times, relative to the wear resistance of pure nickel. Reinforcing titanium with 30% amorphous boron increases wear resistance by more than two orders of magnitude, but the coefficient of friction of CMs is reduced slightly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.