Abstract

Silver diiron tris(oxomolybdate), α-AgFe 2(MoO 4) 3, was synthesized in sealed silica tubes at 1050 K and is isostructural to α-NaFe 2(MoO 4) 3, determined by single-crystal X-ray diffraction (space group P−1, a = 6.9320(7) Å, b = 6.9266(6) Å, c = 10.9732(13) Å, α = 81.197(8)°, β = 83.456(9)°, γ = 81.352(8)° at 300 K, Z = 2). The crystal structure is built up from both monomers and edge-sharing dimers of [FeO 6]-octahedra, which are linked with each other by isolated [MoO 4]-tetrahedra to a three-dimensional network. Ag ions are situated on a site with four near oxygen neighbours. Thermal expansion is most pronounced along the c-axis, while the angle α decreases with increasing temperature. Antiferromagnetic ordering is indicated by a sharp maximum in the temperature dependence of magnetization at 21.5(5) K, and a magnetic moment of 5.36(1) μ B per Fe-ion was derived from the Curie constant in the paramagnetic region. The collinear antiferromagnetic structure with propagation vector k = (0,½,½) and an ordered magnetic moment of 4.62(9) μ B per Fe-ion were deduced from neutron powder diffraction data and give evidence for an underlying magnetic interaction mechanism, resulting in rather strong and long-ranged couplings. Mössbauer spectroscopy shows a change in the electronic configuration on the two distinct Fe sites between room temperature and 150 K, accompanied by an increase of the average Fe–O distance for one site and a shrinking one for the other as expected for charge ordering in a mixed valence compound with Fe(II) and Fe(III).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.