Abstract

Responsive particles, such as biomacromolecules or hydrogels, display a broad and polymodal distribution of conformations and have thus the ability to change their properties (e.g., size, shape, charge density, etc.) substantially in response to external fields or to their local environment (e.g., mediated by cosolutes or pH). Here we discuss the basic statistical mechanics for a model of responsive colloids (RCs) by introducing an additional "property" degree of freedom as a collective variable in a formal coarse-graining procedure. The latter leads to an additional one-body term in the coarse-grained (CG) free energy, defining a single-particle property distribution for an individual polydisperse RC. We argue that in the equilibrium thermodynamic limit such a CG system of RCs behaves like a conventional polydisperse system of nonresponsive particles. We then illustrate the action of external fields, which impose local (position-dependent) property distributions leading to nontrivial effects on the spatial one-body property and density profiles, even for an ideal (noninteracting) gas of RCs. We finally apply density-functional theory in the local density approximation to discuss the effects of particle interactions for specific examples of (i) a suspension of RCs in an external field linear in both position and property, (ii) a suspension of RCs with highly localized properties (sizes) confined between two walls, and (iii) a two-component suspension where an inhomogeneously distributed (nonresponsive) cosolute component, as found, e.g., in the studies of osmolyte- or salt-induced collapse or swelling transitions of thermosensitive polymers, modifies the local properties and density of the RC liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.