Abstract

The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily. To date, three different PPAR isotypes, namely PPAR-alpha, -delta, and -gamma, have been identified in vertebrates and have distinct patterns of tissue distribution. Like all nuclear receptors, the human PPAR-gamma (hPPAR-gamma) is characterized by a modular structure composed of an N-terminal A/B domain, a DNA-binding domain with two zinc fingers (C domain), a D domain, and a C-terminal ligand-binding domain (E/F domain). Human PPAR-gamma exists in two protein isoforms, hPPAR-gamma(1) and -gamma(2), with different lengths of the N-terminal. The hPPAR-gamma(2) isoform is predominantly expressed in adipose tissue, whereas hPPAR-gamma(1) is relatively widely expressed. Human PPAR-gamma plays a critical physiological role as a central transcriptional regulator of both adipogenic and lipogenic programs. Its transcriptional activity is induced by the binding of endogenous and synthetic lipophilic ligands, which has led to the determination of many roles for PPAR-gamma in pathological states such as type 2 diabetes, atherosclerosis, inflammation, and cancer. Of the synthetic ligands, the thiazolidinedione class of insulin-sensitizing drugs (ciglitazone, pioglitazone, troglitazone, rosiglitazone) is employed clinically in patients with type 2 diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.