Abstract

A novel mixed metal oxide, CeO2·CuAlO2 was fabricated by co-precipitation method in aqueous medium. CeO2·CuAlO2 was characterized by XRD, SEM, EDS, TEM, FTIR and PL spectra. The optical properties of the nanoparticles were studied by photoluminescence (PL) spectra. PL spectra at different excitations were recorded. The composite showed emission in UV, visible and NIR region depending on the excitation wavelength. The special spectral feature observed for this composite is that it showed six emission bands at 364, 409, 434, 448, 465 and 481nm when excited at 298nm. The green and red emissions observed at 512 and 669nm are originated from cubic CeO2 phase when excited at 450nm. The PL spectra were found to be dependent on excitation wavelength violating Kasha’s rule. The X-ray diffraction reveals a cubic CeO2 phase and hexagonal CuAlO2 phase. EDS spectra revealed the presence of cerium (Ce), copper (Cu), aluminum (Al) and oxygen (O) elements. The particle size of the CeO2·CuAlO2 mixed oxide was estimated using Scherrer’s formula, which was found to be in the range of 17.2–34.2nm. The TEM image showed particles are almost uniform size of approximately 15–50nm with spherical morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call