Abstract

In this work, indium nitride (InN) films were successfully grown on porous silicon (PS) using metal oxide chemical vapor deposition (MOCVD) method. Room temperature photoluminescence (PL) and field emission scanning electron microscopy (FESEM) analyses are performed to investigate the optical, structural and morphological properties of the InN/PS nanocomposites. FESEM images show that the pore size of InN/PS nanocomposites is usually less than 4 μm in diameter, and the overall thickness is approximately 40 μm. The InN nanoparticles penetrate uniformly into PS layer and adhere to them very well. Nitrogen (N) and indium (In) can be detected by energy dispersive spectrometer (EDS). An important gradual decrease of the PL intensity for PS occurs with the increase of oxidation time, and the PL intensity of PS is quenched after 24 h oxidization. However, there is a strong PL intensity of InN/PS nanocomposites at 430 nm (2.88 eV), which means that PS substrate can influence the structural and optical properties of the InN, and the grown InN on PS substrate has good optical quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.