Abstract

The excited-state photodynamics of intrasupramolecular photoinduced electron transfer was investigated in a series of hydrogen-bonded supramolecular complexes composed of diprotonated 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrin (H(4)DPP(2+)) and electron donors bearing a carboxylate group. The formation of supramolecular complexes was examined by spectroscopic measurements. The binding constants obtained by spectroscopic titration indicate the strong binding (10(8)-10(10) M(-2)) even in a polar and coordinating solvent, benzonitrile (PhCN). The crystal structure of the supramolecular assembly using ferrocenecarboxylate (FcCOO(-)) was determined to reveal a new structural motif involving two-point and single-point hydrogen bonding among saddle-distorted H(4)DPP(2+) dication and two FcCOO(-) anions. Femtosecond laser flash photolysis was applied to investigate the photodynamics in the hydrogen-bonded supramolecular complexes. Rate constants obtained were evaluated in light of the Marcus theory of electron transfer, allowing us to determine the reorganization energy and the electronic coupling matrix constant of photoinduced electron transfer and back electron transfer to be 0.68 eV and 43 cm(-1), respectively. The distance dependence of electron transfer was also examined by using a series of ferrocenecarboxylate derivatives connected by linear phenylene linkers, and the distance dependence of the rate constant of electron transfer (k(ET)) was determined to be k(ET) = k(0) exp(-beta r), in which beta = 0.64 A(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.