Abstract

While the incommensurability in melilites is well documented, the underlying atomic configurations and the composition-dependent phase behavior are not yet clear. We have studied the transition from the incommensurate phase to the high-temperature normal phase (IC-N), and to the low-temperature commensurate phase (IC-C) of selected members of the Ca(2)Co(1 - x)Zn(x)Si(2)O(7) system using X-ray and single-crystal electron diffraction, as well as calorimetric measurements. The space group of the unmodulated normal phase and of the basic structure of the incommensurate phase is P42(1)m; the commensurate lock-in superstructure was refined as a pseudomerohedral twin in the orthorhombic space group P2(1)2(1)2. We found that the commensurate modulation is mainly connected with a sawtooth-like periodicity of rotations of the T(1) tetrahedra in the 3 x 3 superstructure. In this structure, the clustering of the low-coordinated Ca(2+) ions is not complete so that only imperfect octagons were detected. Generally, the effect of increasing substitution of Co by Zn was a continuous reduction of the IC-N and IC-C transition temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.