Abstract

A study is reported of adsorption of an associating Lennard-Jones fluid with four associative sites per molecule in a slit-like pore. The density distribution of particles in the pore and thermodynamics properties are evaluated by using a density functional method. It is found that at low temperatures the fluid exhibits a set of layering transitions, followed by capillary condensation. Transitions are localized by analysing the grand canonical potential. The density profiles of particles and the distribution of unbound and differently bonded particles demonstrate changes in the structure of the fluid in the pore along the phase coexistence. The critical temperature is lower for a confined fluid, compared with the bulk counterpart. However, an increase in the energy of association increases the critical temperature. The envelope of the capillary condensation is narrower than the bulk liquid-vapour phase diagram. The dependence of the solvation force on the energy of association and on the bulk density is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.