Abstract

The thermal barrier coatings (TBC) of the yttria-stabilized zirconia (YSZ) has been deposited by the atmospheric plasma spraying (APS),followed by the irradiation of high intensity pulsed ion beam (HIPIB) with the voltage of 250 KV and the ion current density of 300 A/cm2 and pulsed times of 2, 5, 10 and 20, respectively. The X-ray diffraction (XRD) analysis reveals that the coating is characterized by the tetragonal ZrO2 phase instead of the cubic phase and the original monoclinic phase after the irradiation. The scanning electron micros cope analysis demonstrates that the HIPIB treatment leads to a smooth TBC surface, but produces micro-cracks and round grain at the surface. This implies that the plasma erupts during the ion beam interaction with the coatings with poor thermal conductivity, and the micro-cracks were produced in the cooling process. The isothermal oxidation experiment performed at 1050°C in air and suggests that the oxidation resistance of the coating can be largely enhanced after HIPIB treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call