Abstract
The long-range and short-range structure of nanocrystalline and microcrystalline acceptor-doped ceria is investigated by a combined approach using EXAFS, XANES, Raman, and XRD, and correlated with the oxide-ion conductivity in the bulk and in grain boundaries. Compared to Yb3+ and Er3+, the positive influence of Sm3+ is attributed to the ability to repel oxygen vacancies, and to keep a localized disorder around the dopant. The long-range structural analysis shows lattice contraction for Yb- and Er-doping and lattice expansion for Sm-doping. The short-range analysis around the dopants and cerium highlights that a more complex structural rearrangement has to be assumed to explain the complementary results of the different techniques. Nominally trivalent dopants are also shown to have an effect on the electronic structure of ceria, and the consequences on oxide-ion conductivity are highlighted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.