Abstract

Sr2Be2B2O7 (SBBO) has long been considered as one of the most promising deep-ultraviolet nonlinear optical materials, but its crystal structure described by space group P6̅c2 in previous studies has remained questionable. On the basis of first-principles calculations coupled with the high-throughput crystal structure prediction method, we found three energetically favorable structures for SBBO with space groups Cm, Pm, and P6̅. These structures and a superstructure of space group Pm-S derived from the Cm structure were refined by the Rietveld method using the available powder X-ray diffraction data. These analyses show that the Pm-S structure is the best one, but its parent Cm structure is almost equally good and has the advantage of having higher symmetry. Via atom response theory analysis, we resolved the cause for the second-harmonic generation (SHG) responses of SBBO at the atomic and orbital level to elucidate the importance of local inversion symmetry in reducing the SHG response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call