Abstract
The spectroscopic studies of various physical properties of glassy and polycrystalline chalcogenide alloys are important due to their importance as active materials in various solid state devices. The composition dependence of these properties are explained on the basis of coordination number, but the splitting of this effect from the nature of additive is imperative for furthering the understanding of these systems. In the present work, the structural and spectroscopic investigations of melt quenched bulk In-Sb-Se chalcogenide alloys have been studied by XRD, RAMAN and optical spectroscopic techniques. The XRD study reveals the polycrystalline nature of the samples. The composition was analysed using the energy dispersive X-ray spectroscopy technique. The XRD study reveals the crystallization of Sb2Se3 and -In2Se3 phases while the increase in the intensity for -In2Se3 phase has been observed with the increase in indium content. The RAMAN spectra also reveal the formation of chalcogenide based Sb and In structural units. The diffused reflectance spectrum was used to calculate the optical absorption in 800-1500 nm spectral region and used to study the composition dependence of the optical gap in these samples. The results have been discussed in conjunction with the heterogeneous phases; density of defect states; electronegativity and average mean bond energy for these polycrystalline alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.