Abstract

The myosin crossbridge array, positions of non-crossbridge densities on the backbone, and the A-band “end filaments” have been compared in chemically skinned, unfixed, uncryoprotected relaxed, and rigor plaice fin muscles using the freeze-fracture, deep-etch, rotary-shadowing technique. The images provide a direct demonstration of the helical packing of the myosin heads in situ in relaxed muscle and show rearrangements of the myosin heads, and possibly of other myosin filament proteins, when the heads lose ATP on going into rigor. In the H-zone these changes are consistent with crossbridge changes previously shown by others using freeze-substitution. In addition, new evidence is presented of protein rearrangements in the M-region (bare zone), associated with the transition from the relaxed to the rigor state, including a 27-nm increase in the apparent width of the M-region. This is interpreted as being mostly due to loss or rearrangement of a nonmyosin (M9) protein component at the M-region edge. The structure and titin periodicity of the end-filaments are described, as are suggestions of titin structure on the myosin filament backbone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call