Abstract

The structure of inclusions and their influence on surface morphology, local strain, and basal plane dislocations were investigated in silicon carbide (SiC) epitaxial layers grown on 4° offcut substrates. On high-resolution x-ray topography images, strain fields were observed surrounding the inclusions. Ultraviolet photoluminescence images revealed the presence of strain-induced dislocations around the inclusions. Micro-Raman and microphotoluminescence spectroscopy showed that the inclusions exhibited a complex structure that consisted of 3C polytype regions and misoriented 4H polytype regions. The resulting lattice deformation typically propagates in the step-flow growth direction and causes distorted surface morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.