Abstract

The structure, structural disorder and chemistry of miserite from the charoite-bearing rocks of the Murun massif (Russia) and from alkaline-syenite pegmatitic rocks of the Dara-i-Pioz massif (Tajikistan) were investigated employing a combination of electron microprobe, single crystal diffraction and micro-Fourier transform infrared spectroscopy analysis. Chemical analysis of the sample investigated by X-ray diffraction evidenced that Dara-i-Pioz miserite has a greater REE concentration than Murun miserite (~0.22 vs. 0.05 apfu, respectively) and also contains Y (0.14 apfu), which is absent in Murun miserite. The occurrence of a band at about 1,600 cm−1 testified to the presence of H2O in miserite at hand. Structural analyses yielded average cell parameters of a = 10.092, b = 16.016, c = 7.356 A, α = 96.60°, β = 111.27° and γ = 76.34°. Anisotropic structural refinement in space group P $$\bar{1}$$ converged at similar values for the analyzed samples (R ~3.4, R w ~3.8 %). An interesting feature shown by both the miserite specimen is the presence, revealed by difference Fourier analysis, of a disordered part of the structure. This turned out to be due to the flipping of the tetrahedra belonging to the isolated [Si2O7]6− diorthogroups, one of the two radicals (the other is [Si12O30]12−) characterizing the miserite structure. The sixfold and seven-vertex Ca polyhedra linked to the inverted diorthogroups show variation in coordination number with respect to those of the ordered structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.