Abstract

Solutions of trans–polyisoprene in cyclohexane are investigated in atomistic detail at different compositions at two different temperatures. We investigate the influence of polymer concentration on the dynamics of the solvent molecules and the structure of the solvation shell. The double bonds along the polymer backbone are preferentially approached by the solvent molecules. The mobility of cyclohexane molecules decreases with increasing polymer concentration in ambient conditions. The reorientation of molecules becomes more anisotropic with concentration as the polymer hinders the reorientation of the molecular plane. At elevated temperatures the influence of the polymer is weaker and the reorientation of the solvent is more isotropic. Additionally, a fast and efficient way to set up atomistic simulations is shown in detail in which the initial simulations increase in length and in the simulation time-step. The excess energy from initial overlaps is removed by resetting the velocities at regular intervals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call