Abstract

Natural-abundance 13C NMR signals from glycogen are observable in situ within the perfused livers of rats. The nuclear magnetic relaxation properties (T1, T2, eta + 1) of glycogen were measured for glycogen in situ and in vitro and were found to be identical. All of the carbon nuclei in glycogen contribute to the high-resolution NMR spectrum, in spite of glycogen's very large molecular weight. The metabolism of glycogen in situ in the perfused rat liver was followed by 13C NMR. Stimulation of the fed rat liver by physiological glucagon levels led to rapid glycogenolysis. Perfusion of the liver with [1-13C]glucose led to net glycolysis, with concomitant scrambling of the label from C1 to C6 due to triosephosphate isomerase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.