Abstract
The variant form of human xeroderma pigmentosum syndrome (XPV) is caused by a deficiency in DNA polymerase η (Pol η) that enables replication through sunlight-induced pyrimidine dimers. We report high-resolution crystal structures of human Pol η at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol η acts like a molecular splint to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol η orthologs form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. Based on the structures, eight Pol η missense mutations causing XPV can be rationalized as undermining the “molecular splint” or perturbing the active-site alignment. The structures also shed light on the role of Pol η in replicating through D loop and DNA fragile sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.