Abstract

The structural origin of enzyme cold-adaptation has been the subject of considerable research efforts in recent years. Comparative studies of orthologous mesophilic–psychrophilic enzyme pairs found in nature are an obvious strategy for solving this problem, but they often suffer from relatively low sequence identity of the enzyme pairs. Small bacterial lipases adapted to distinctly different temperatures appear to provide an excellent model system for these types of studies, as they may show a very high degree of sequence conservation. Here, we report the first crystal structures of lipase A from the psychrophilic bacterium Bacillus pumilus, which confirm the high structural similarity to the mesophilic Bacillus subtilis enzyme, as indicated by their 81% sequence identity. We further employ extensive QM/MM calculations to delineate the catalytic reaction path and its energetics. The computational prediction of a rate-limiting deacylation step of the enzymatic ester hydrolysis reaction is verified by stopped-flow experiments, and steady-state kinetics confirms the psychrophilic nature of the B. pumilus enzyme. These results provide a useful benchmark for examining the structural basis of cold-adaptation and should now make it possible to disentangle the effects of the 34 mutations between the two enzymes on catalytic properties and thermal stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.