Abstract

M-type barium hexaferrite films were processed by pulsed laser deposition on single-crystal 6-H silicon carbide substrates. MgO buffer and barrier layers were introduced to improve the film quality. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and ferromagnetic resonance (FMR). X-ray thetas-2thetas diffraction measurements indicated a strong (0, 0, 2n) crystallographic alignment. The magnetization of the BaM film is comparable to bulk values (4piM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ~4320 G). A derivative power FMR linewidth of 500 Oe was measured at 55 GHz for the as-deposited films. This paper explores a potential next generation of microwave and millimeter-wave monolithic integrated circuit technology based upon a wide band-gap semiconducting material

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call